skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rekatsinas, Theodoros"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 9, 2026
  2. There have been many decades of work on optimizing query processing in database management systems. Recently, modern machine learning (ML), and specifically reinforcement learning (RL), has gained increased attention as a means to develop a query optimizer (QO). In this work, we take a closer look at two recent state-of-the-art (SOTA) RL-based QO methods to better understand their behavior. We find that these RL-based methods do not generalize as well as it seems at first glance. Thus, we ask a simple question:How do SOTA RL-based QOs compare to a simple, modern, adaptive query processing approach?To answer this question, we choose two simple adaptive query processing techniques and implemented them in PostgreSQL. The first adapts an individual join operation on-the-fly and switches between a Nested Loop Join algorithm and a Hash Join algorithm to avoid sub-optimal join algorithm decisions. The second is a technique calledLookahead Information Passing(LIP), in which adaptive semijoin techniques are used to make a pipeline of join operations execute efficiently. To our surprise, we find that this simple adaptive query processing approach is not only competitive to the SOTA RL-based approaches but, in some cases, outperforms the RL-based approaches. The adaptive approach is also appealing because it does not require an expensive training step, and it is fully interpretable compared to the RL-based QO approaches. Further, the adaptive method works across complex query constructs that RL-based QO methods currently cannot optimize. 
    more » « less
  3. We study training of Graph Neural Networks (GNNs) for large-scale graphs. We revisit the premise of using distributed training for billion-scale graphs and show that for graphs that fit in main memory or the SSD of a single machine, out- of-core pipelined training with a single GPU can outperform state-of-the-art (SoTA) multi-GPU solutions. We introduce MariusGNN, the first system that utilizes the entire storage hierarchy—including disk—for GNN training. MariusGNN introduces a series of data organization and algorithmic contributions that 1) minimize the end-to-end time required for training and 2) ensure that models learned with disk-based training exhibit accuracy similar to those fully trained in memory. We evaluate MariusGNN against SoTA systems for learning GNN models and find that single-GPU training in MariusGNN achieves the same level of accuracy up to 8× faster than multi-GPU training in these systems, thus, introducing an order of magnitude monetary cost reduction. MariusGNN is open-sourced at www.marius-project.org. 
    more » « less
  4. In this paper, we show that hidden layer activations in overparameterized neural networks for image classification exist primarily in subspaces smaller than the actual model width. We further show that these subspaces can be identified early in training. Based on these observations, we show how to efficiently find small networks that exhibit similar accuracy to their overparameterized counterparts after only a few training epochs. We term these network architectures Principal Component Networks (PCNs). We evaluate PCNs on CIFAR-10 and ImageNet for VGG and ResNet style architectures and find that PCNs consistently reduce parameter counts with little accuracy loss, thus providing the potential to reduce the compu- tational costs of deep neural network training. 
    more » « less
  5. Structured data, or data that adheres to a pre-defined schema, can suffer from fragmented context: information describing a single entity can be scattered across multiple datasets or tables tailored for specific business needs, with no explicit linking keys. Context enrichment, or rebuilding fragmented context, using keyless joins is an implicit or explicit step in machine learning (ML) pipelines over structured data sources. This process is tedious, domain-specific, and lacks support in now-prevalent no-code ML systems that let users create ML pipelines using just input data and high-level configuration files. In response, we propose Ember, a system that abstracts and automates keyless joins to generalize context enrichment. Our key insight is that Ember can enable a general keyless join operator by constructing an index populated with task-specific embeddings. Ember learns these embeddings by leveraging Transformer-based representation learning techniques. We describe our architectural principles and operators when developing Ember, and empirically demonstrate that Ember allows users to develop no-code context enrichment pipelines for five domains, including search, recommendation and question answering, and can exceed alternatives by up to 39% recall, with as little as a single line configuration change. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    We propose a new framework for computing the embeddings of large-scale graphs on a single machine. A graph embedding is a fixed length vector representation for each node (and/or edge-type) in a graph and has emerged as the de-facto approach to apply modern machine learning on graphs. We identify that current systems for learning the embeddings of large-scale graphs are bottlenecked by data movement, which results in poor resource utilization and inefficient training. These limitations require state-of-the-art systems to distribute training across multiple machines. We propose Marius, a system for efficient training of graph embeddings that leverages partition caching and buffer-aware data orderings to minimize disk access and interleaves data movement with computation to maximize utilization. We compare Marius against two state-of-the-art industrial systems on a diverse array of benchmarks. We demonstrate that Marius achieves the same level of accuracy but is up to one order of magnitude faster. We also show that Marius can scale training to datasets an order of magnitude beyond a single machine's GPU and CPU memory capacity, enabling training of configurations with more than a billion edges and 550 GB of total parameters on a single machine with 16 GB of GPU memory and 64 GB of CPU memory. Marius is open-sourced at www.marius-project.org. 
    more » « less
  8. null (Ed.)
  9. null (Ed.)